残念!GL 敗退は協会のせい?

6/23 統計解析論実習手順

1. ログインの方法

user:lguest

password: lguest

- 2.散布図の書き方.
- (1) データの入力



(2) 散布図の作成

ア)散布図を書く対象のデータ範囲をドラッグする. 以下のようになる.





| 🔀 Microsoft Excel – 0623.xls       |       |     |     |        |     |  |  |  |
|------------------------------------|-------|-----|-----|--------|-----|--|--|--|
| 圏 ファイル(E)<br>Adobe PDF( <u>B</u> ) | 編集(E) | 表示⊘ | 挿入仰 | 書式(0)  | ツール |  |  |  |
| 🗅 📂 🖶 🔒                            | 1     |     | -   | Σ • Å↓ | 1   |  |  |  |
| <u>60.</u>                         |       |     |     |        |     |  |  |  |

すると,下の図のようにウィザードがでる.



ウ) グラフィックウィザードの中の「グラフの種類」 の中で,「散布図」を左クリックで選び,

| グラフの種類( <u>C</u> ): |   |
|---------------------|---|
| ₩ 縦棒 ▲              | - |
| ■ 横棒                | ٦ |
| 📈 折れ線               |   |
| 西田                  |   |
| 🔬 散布図               |   |
| 面                   |   |
| 👩 ドーナツ              |   |
| 💩 レーダー              |   |
| 👍 等高線               |   |
| 💀 バブル               | - |
|                     |   |

# \_次へ(№)> を左クリック.下のようなウィザードが

でる.

| ラフ ウィザード - 2/4 - グラフの元データ     | ?          |
|-------------------------------|------------|
| データ範囲                         |            |
| ¥                             |            |
| 14                            |            |
| 12                            |            |
|                               | <b>♦</b> ¥ |
| 4                             |            |
|                               |            |
| 0 10 20 30 40 50 80 70 80     |            |
|                               |            |
| y 名前(N): =Sheet1!\$B\$1       | <b>.</b>   |
| ×の値(※): =Sheet1!\$A\$2:\$A\$8 | <b>K</b> . |
| Yの値(Y): =Sheet1!\$B\$2:\$B\$8 | ₹.         |
| _ 追加(A) _ 削除(B)               |            |
|                               |            |
|                               |            |
|                               | 完フ(F)      |
|                               | 元11円       |
|                               |            |

エ) 次へ(1)> を左クリックすると以下のようなウ

## ィザードがでる.

| グラフ ウィザード - 3/4 - グラフ オ       | ブション   |          |               |      | ? ×            |
|-------------------------------|--------|----------|---------------|------|----------------|
| タイトルとラベル 軸 目盛<br>グラフ タイトル(T): | 線   凡例 | │ データラベル | 1             |      | _1             |
| y<br>又/如(直軸(A)·               | 14     |          | ÿ             |      |                |
|                               | 12     | 2        |               | •    | - 1            |
| Y/数值軸( <u>V</u> ):            | 8      |          | •             | **   | €y             |
| Ⅻ第2項目軸♡0:                     | 4      |          | •             |      | - 1            |
| Y/第2数値軸(Y):                   |        | ,        | 40            |      |                |
|                               |        |          |               |      |                |
| 2                             | キャンセル  | < 戻る(B)  | )次へ( <u>N</u> | )> 完 | 7 ( <u>F</u> ) |

オ)「タイトルとラベル」のタブ内の「グラフタイト ル」「X/数値軸」「Y/数値軸」を以下のように入力す

Ø



以下のような散布図ができる.



データの入ったセルが, グラフにかぶっているので, グラフをドラッグしてよこにどけて, データの入っ たセルが見えるようにする.

カ) グラフの中の横軸に振られた数値の上にカーソ ルを合わせると「X/数値軸」という文字が出てくる. (この時,「スピード」というラベルの上で止めず, 数値の上まで持って行くこと)



この状態で,ダブルクリックする.下図のようなウ ィンドウがでる.

| パターン  目盛   フォント   ま                       |                                 |           |
|-------------------------------------------|---------------------------------|-----------|
| ●<br>● 自動( <u>A</u> )<br>● なし( <u>N</u> ) | C なし C<br>() 内向き C              | 外向き<br>交差 |
| ○指定<br>スタイル(S):▼                          | 補助目盛の種類(B)-<br>でなし C<br>C 内向き C | 外向き<br>交差 |
| 本さ(W):                                    | 目盛ラベル(①)                        | 上端/右端     |
|                                           | ○ ト端/左端 ●                       | 軸のト/左     |
|                                           |                                 |           |
|                                           |                                 |           |

「目盛」のタブを左クリックすると,下のようにな

|                                                                                              | いた「表示形式」                     | 配震 | <u>?</u> × |
|----------------------------------------------------------------------------------------------|------------------------------|----|------------|
| X/數值軸目盛<br>自動<br>▽ 最小値(1):<br>▽ 最大値(2):<br>▽ 目盛間隔(A):<br>▽ 補助目盛間隔(2):<br>▽ イ/數值軸<br>との交点(2): | 0<br>80<br>20<br>4           |    |            |
| -<br>表示単位(U): なし<br>▼ 表示単位のラベルをグ                                                             | <ul><li>ラフに表示する(D)</li></ul> |    |            |
| <ul> <li>□ 対数目盛を表示する()</li> <li>□ 軸を反転する(R)</li> <li>□ 最大値で Y/数値軸と</li> </ul>                | L)<br>:交差する( <u>M</u> )      |    |            |
|                                                                                              |                              |    |            |

「最小値」を以下のように設定し , 💶 🍑 しまお

す.

る

| X/数値軸目盛            |    |
|--------------------|----|
| 自動                 |    |
| □ 最小値( <u>N</u> ): | 40 |

すると,以下のような散布図が得られる.



(3)回帰直線の書き入れ

この散布図に最小二乗法により推定した回帰直線 を書き入れてみよう.まず,データを表す点の上に マウスカーソルを持って行く.そのときには,下の ように「系列・・・」というパネルがポップアップ してくるはずである.そうならないときは,下の図になるようなところに,マウスカーソルを移動する.



そこで,マウスを右クリックすると,以下のような メニューがでてくる.



この中の「近似曲線の追加」を左クリックすると, 以下のようなウィンドウがでてくる.



このウィンドウの「オブション」のタブを左クリッ クすると,以下のようなタブに切り替わる.

| į, | E(以曲線の追加 ? ×                               | ŀ              |
|----|--------------------------------------------|----------------|
| 1  | 種類 オプション                                   |                |
| :  | 近似曲線名<br>ⓒ 自動(A):線形 (y)                    | 21<br>21<br>41 |
| :  | ○指定( <u>0</u> ):                           | ľ              |
| :  | - 予測<br>前方補外(E): 0 三 単位<br>後古神外(D): 0 三 単位 | (<br>2<br>1(   |
| 1  |                                            | ţ.             |
|    | □ 切片(S) = 0 □ グラフに数式を表示する(E)               | K              |
| •  | □ グラフに R-2 乗値を表示する( <u>R</u> )             | 0              |
|    |                                            |                |
|    |                                            | ā              |
| 1  |                                            | 0<br>18        |
|    | OK キャンセル                                   |                |

ここで,このウィンドの中の以下の二つのチェック ボックスにチェックを入れる.



を書き入れた散布図が得られる.



回帰式のフォントが大きすぎるし,位置も悪いので, 移動させる.そのために,まず,回帰式を左クリッ クして,以下のようにする.



さらに,回帰式の文字をドラッグして,以下のようにする.



### その後,ツールバー



#### の中にある



を

MS Pゴシック **-** 10 Ŧ

に変更する.のとき,「11」の隣の矢印を右クリックすると,



のようになるので「10」を左クリックすればよい. すると,以下のように字が小さくなった回帰式が得られる.



あとは,この式の上にカーソルをあわせって,左ク リックしたままドラッグして,式を左上に移動させ る.



## (4)回帰分析

まずメニューバーの「ツール」を左クリックし ,「分 析ツール」を左クリックする.



すると以下のようなウィンドウが現れる.

| <b>データ分析</b> | EIMARI      | 774.JU(F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 福井にと                               | - 37 TT (V)          | 40 / (I) | 書もいい | -9-0017 | T 19800               | - M |
|--------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------|----------|------|---------|-----------------------|-----|
| 分析ツール(A)     | データタ        | 分析                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                      |          |      |         | ?                     |     |
|              | 分での分析でであった。 | ツール(A)<br>(分析: イン<br>(分析: 繰り)<br>(分析: 繰り)<br>(分析: 繰り)<br>(次)<br>(次)<br>(分析: 一般)<br>(分析: 一般)<br>(分析: 一般)<br>(分析: 一般)<br>(分析: 一般)<br>(分析: 一般)<br>(分析: 一般)<br>(分析: 一人)<br>(分析: 二人)<br>(分析: 二人)<br>(分析: 二人)<br>(分析: 二人)<br>(分析: 二人)<br>(分析: 二)<br>(分析: 二)<br>(分)<br>(分析: 二)<br>(分)<br>(分)<br>(分)<br>(分)<br>(分)<br>(分)<br>(分)<br>(分)<br>(分)<br>(分 | - 創造<br>返しのあるニ<br>返しのないこ<br>を使った分散 | 二元配置<br>二元配置<br>3の検定 |          |      |         | OK<br>キャンセル<br>ヘルプ(H) | ]   |

このウィンドウのなかのスクロールバーを動かして, 下の方の「回帰分析」を出し,それを左クリック.

|   | - Investor     | 7.641.70715.7       | 360 - T - Y - Y   | 30.1.107      | 48 77 117 |   | -7-30417 | 1 = 2007 | 100 |
|---|----------------|---------------------|-------------------|---------------|-----------|---|----------|----------|-----|
| ī | - ቃን           | 祈                   |                   |               |           |   |          | ?        |     |
|   | 分析             | ソール( <u>A</u> )     |                   |               |           |   |          |          | 1   |
|   | 닳              | ガラム                 |                   |               |           |   | <b></b>  |          |     |
|   | 乱数             | 〒49<br>発生           |                   |               |           |   |          | キャンセル    |     |
|   | 順位             | と百分位数               |                   |               |           |   |          | ヘルプ(日)   | ιC  |
|   | サンプ            | がしり                 |                   | 16 6 40 -     |           |   |          |          | 1   |
|   | lt 種)<br>It 種) | 12: 一対の構<br>記: 等分散物 | 景本による半<br>特仮定した 2 | 均の検定<br>標本による | 検定        |   |          |          |     |
|   | t 検            | 11 分散加速             | 影ないと何             | 定した2種         | 農業による核    | 定 | -        |          |     |
|   | 2 (1史)         | モニン1黒本に             | പാ+ചിഡ്           | 東正            |           |   |          |          |     |

その結果,以下のウィンドウが現れる.

| 回帰分析                                                                                                 | <u>?×</u>                      |
|------------------------------------------------------------------------------------------------------|--------------------------------|
| 入力元       入力 Y 範囲(Y):       入力 X 範囲(W):       「 うべル(L)       「 定数に 0 を使用(Z)       「 有意水準(Q)       95 | OK<br>キャンセル<br>ヘルプ( <u>H</u> ) |
| 出力オブション<br>C 一覧の出力先(S):<br>「 新規又は次のワークシート(P)<br>C 新規ブック(W)<br>3株美                                    |                                |
|                                                                                                      |                                |

まず,被説明変数を指定するために,「入力Y範囲」

の右の国家ボタンを左クリックする.

入力 Y 範囲 🕐: 📃 🗾

以下のようになる.

|                            |                    | ·\ ±=^^           | 47 M ±- | A. 10 10 104 | F\ 99966/x\ | A 104010           |          |  |  |
|----------------------------|--------------------|-------------------|---------|--------------|-------------|--------------------|----------|--|--|
| 回帰分析                       | б                  |                   |         |              |             | ?                  | <u>×</u> |  |  |
|                            |                    |                   |         |              |             |                    | ≣√⁰      |  |  |
| Microsoft Excel - 0623.xls |                    |                   |         |              |             |                    |          |  |  |
| [ 🔊 ·                      | ファイル( <u>E</u> ) 綿 | 編集( <u>E</u> ) 表示 | ☑ 挿入①   | 書式(2) ツ      | ール(エ) デー    | タ( <u>D</u> ) ウィント | 『ウ(W)    |  |  |
|                            |                    | 6 4 B             | w .     | Σ - AL 4     | 100% -      | ? » [              | NS PJ    |  |  |
|                            |                    |                   | 68      | 2.4          | -           |                    |          |  |  |
|                            |                    |                   |         |              |             |                    |          |  |  |
| ▼ <i>f</i> × x             |                    |                   |         |              |             |                    |          |  |  |
|                            | A                  | В                 | С       | D            | Е           | F                  | (        |  |  |
| 1                          | х                  | У                 |         |              |             |                    |          |  |  |
| 2                          | 45                 | 5.3               |         |              |             |                    |          |  |  |
| 3                          | 50                 | 7.5               |         |              |             |                    |          |  |  |
|                            |                    |                   |         |              |             |                    |          |  |  |

ここで, yの入っている範囲を, yのある行のラベ ルyとデータの範囲をドラッグして指定する.



指定し終わったら、

 の右側の■ボタンを左クリックする.以下のよう

に, 被説明変数の範囲が指定された.

| 回帰分析                                                                                          | ? ×                   |
|-----------------------------------------------------------------------------------------------|-----------------------|
| 入力元<br>入力 Y 範囲(Y):<br>\$E\$1.\$B\$8<br>入力 X 範囲(S):<br>「ラベル(L) 「定数(C 0 を使用(Z)<br>「有意水準(Q) 95 % | OK<br>キャンセル<br>ヘルプ(H) |
| 出力オブション<br>○ 一覧の出力先(S):  ■<br>○ 新規又は次のワークシート(P)<br>○ 新規フック(W)<br>- 残差                         |                       |
| 「「残差(R) 「 残差グラフの作成(D)     標準化された残差(T) 「 観測値グラフの作成Φ     正現確率     「 正規確率グラフの作成(N)               | -                     |

同様にして,説明変数の範囲を「入力 X 範囲」として指定し,その他,以下のようにメニューに指定する.

| 回帰分析                                                                                                                                                                                                                                                              | <u>?×</u>                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| <ul> <li>入力 Y 範囲(Y):</li> <li>         「おち135533</li> <li>         入力 Y 範囲(Y):</li> <li>         「おち135533</li> <li>         、入力 X 範囲(Y):</li> <li>         「なちパル(L)</li> <li>         「定数に0 を使用(Z)</li> <li>         「有意水準(Q)</li> <li>         「95 %</li> </ul> | <u>OK</u><br>キャンセル<br>ヘルプ(出) |
| 出力オブション       で一覧の出力先(S):       「新規又は次のワークシート(P)       「新規ブック(W)       は本                                                                                                                                                                                         | -                            |
| 75年<br>「 残差(R) 「 残差グラフの作成(D)<br>「 標準化された残差(T) 「 観測値グラフの作成(D)<br>正規確率<br>□ 正規確率<br>□ 正規確率<br>□ 正規確率                                                                                                                                                                |                              |

OK

指定し終わったら、

を左クリックする.



計算結果が表示される.

概要

| 回帰網          | 統計        |             |          |         |         |          |          |
|--------------|-----------|-------------|----------|---------|---------|----------|----------|
| 重相関 R        | 0.789972  | i           | r 相関係数   |         |         |          |          |
| 重決定 R2       | 0.624056  | ◀           | 決定係数     |         |         |          |          |
| 補正 R2        | 0.548867  |             |          |         |         |          |          |
| 標準誤差         | 1.508736  | •           | 残差標準偏差   | É       |         |          |          |
| 観測数          | 7         |             |          |         |         |          |          |
|              |           | • ,         | ESS      | RSS     | TSS     |          |          |
| 分散分析表        | Ē.        | /           |          |         |         |          |          |
|              | 自由度       | 変動          | 分散       | 観測された   | :分散比    | 有意 F     |          |
| 回帰           | 1         | 18.89286    | 18.89286 | 8.29    | 986193  | 0.03455  |          |
| 残差           | 5         | 11.38143    | 2,276286 |         |         |          |          |
| 合計           | 6         | 30.27429    |          |         |         |          |          |
|              |           |             |          |         |         |          |          |
|              | 係数        | 標準誤差        | t        | P−ſi    | 直       | 下限 95%   | 上限 95%   |
| 切片           | ,-1.82857 | 3.468688    | -0.52717 | 0.620   | 622747  | -10.7451 | 7.08796  |
| <u>x</u>     | 0.164286  | 0.057025    | 2.880948 | 0.03    | 454982  | 0.017699 | 0.310873 |
|              | ×         | Ī           |          |         |         |          |          |
| <i>α</i> ′ / |           | -<br>それぞれの係 | 数推       | それぞれの係数 |         |          |          |
| β /          |           | 定値の標準誤      | 差        | のt統計量値  | <u></u> | それぞれ     | ,の係数の 9  |
| r            |           |             |          |         | _       | 5%信頼[    | 区間       |

(6)検定のやり方

境界値の計算法

< 有意水準 5 %, 両側検定>

=TINV(0.05, 観測数-2)

< 有意水準 1 % , 両側検定 >

=TINV(0.01, 観測数-2)

< 有意水準 5 %,片側検定 >

=TINV(0.05\*2, 観測数-2)

< 有意水準1%, 片側検定>

=TINV(0.01\*2, 観測数-2)

帰無仮説における係数値はが だった場合の t 値 =(係数値 - )/標準誤差

<演習>

1.教科書 p.57 の例 2.10 の回帰分析を行え.帰無 仮説  $\beta = -1$ を検定せよ.

2.章末練習問題8