Infinitely Repeated Games

e An infinitely repeated game consists of an infinite sequence of repeti-
tions of a one-period simultaneous-move game, the stage game.

— In the stage game, each player i has a strategy set S;; g; € S; 1s a
particular feasible action for player i.

+ Player i’s payoff function: 7;(q)
g = (q17"'7q1)

* One-period best-response payoff: 7;(g_;) = max ;/cg, 7 (gt q—i)-

e The players discount payoffs with discount factor 6 € (0, 1).

e Players observe each other’s action choices in each period (and have
perfect recall).

— A pure strategy for player i, s;, is a sequence of functions {s; ()}~ ,
mapping from the history of previous action choices (denoted H;_1)
to his action choice in period t, s;;(H,_1) € S;.




e Outcome path Q(s): an infinite sequence of actions {g; };-, that will

actually be played when the players follow strategies s.
— Discounted payoff from outcome path Q: v;(Q) = Y72 ;6 Wi (gs+1)-
— Average payoff from outcome path Q: (1 —06)v;(Q)

— The discounted continuation payoff from outcome path Q from some
period t onward (discounted to period #): v;(Q,t) = Y7 0 Ti(Gs+1).




Nash Reversion

The strategies that call for each player i to play his stage game Nash
equilibrium action in every period, regardless of the prior history of play,
constitute an SPNE for any value of 6 < 1.

A strategy profite in an infinitely repeated game is one of Nash reversion
if each ptayer’s strategy calls for playing some outcome path until some-
one defects and playing a stage game Nash equilibrium ¢g* thereafter.

A Nash reversion strategy profile that calls for playing Q prior to any
deviation is an SPNE <= #;(q_;) + %n,-(q*) <v;i(Q,t) Vt Vi.

Consider a two player case with S; C R Vi. Suppose also that m;(q) is

differentiable at a stage game Nash equilibrium ¢*, with d7;(¢*)/dq; #
0 Vj # i Vi. Then, there is some ¢’ with 7(q) > m(q*) whose infinite
repetition 1s the outcome path of an SPNE that uses Nash reversion.

Outcome path Q can be sustained as an SPNE outcome path using Nash




reversion = it can be so sustained for any 6’ > 0.

e Nash reversion folk theorem [Friedman (1971)]: m;(q) > m;(q*)
= J0 VO > O: infinite repetition of ¢ is the outcome path of an SPNE
using Nash reversion strategies.

e Minimax payoff: T; = min,  max,, T;(q).
— Regardless of the strategies played by his rival, player i’s average

payoff in the infinitely repeated game or in any subgame within it
cannot be below 7;.

* Payoffs that strictly exceed m; for each player i are known as indi-
vidually rational payoffs.

e Consider a two player case with S; C R Vi. Suppose also that 7;(g) is

differentiable at a stage game Nash equilibrium ¢*, with d7;(¢*)/dq; #
0Vj+#iVi. Then: n(q*) > &; Vi = there is some SPNE with discounted
payoffs to the players v such that (1 — 0)v. < m;(g*) Vi.




Folk Theorem

e We focus on the case with two players and pure strategies.
— See Fudenberg and Maskin (1986) and Fudenberg and Maskin (1991).

x  With more than two players, the result requires that the set of fea-
sible payoffs satisfy an additional “dimensionality” condition.

o Folk Theorem: m> 1 = 40 < 1 V0 > 0: & are the average payoffs
arising in an SPNE.

— One deviation principle: If no single-period deviation followed by
conformity with the stategies is worthwhile, then neither is any mul-

tiperiod deviation (this is a general principle of dynamic program-

ming).

e The theorem’s name refers to the fact that some version of the result was
known in game theory “folk wisdom” well before its formal appearance
in the literature.




e The original appearances of the result in the literature actually analyzed

infinitely repeated games without discounting [see, for example, Rubin-
stein (1979)].

For arbitrary o0, constructing the full set of SPNEs is a delicate pro-
cess. Each SPNE, whether collusive or punishing, uses other SPNEs as
threatened punishments. For details on how this is done, see the original
contributions by, e.g., Abreu (1986) and Abreu (1988).




Exercises

e 12.D.3P Consider an infinitely repeated Cournot duopoly with discount
factor 6 < 1, unit costs of ¢ > 0, and inverse demand function p(g) =
a—bg, with a > c and b > 0.

(a) Under what conditions can the symmetric joint monopoly outputs

g1 = q2 = q" /2 be sustaincd with strategies that call for (¢ /2,4™ /2)

to be played if no one has yet deviated and for the single-period
Cournot (Nash) equilibrium to be played otherwise?

(b) Derive the minimal level of & such that output levels (¢1,92) = (¢,q)
with g € [(((a—c¢)/(2b)),((a— c)/b)] are sustainable through Nash
reversion strategies. Show that this level of 6, 6(g), is an increasing,

differentiable function of g.
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